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Abstract

A Taylor-Galerkin finite element method for
solving large, nonlinear thermal-structural
problems is presented. The algorithm is
formulated for coupled transient and uncoupled

quasistatic thermal-structural problems.
Vectorizing strategies ensure computational
efficiency. Two applications demonstrate the

validity of the approach for analyzing transient
and quasistatic thermal-structural problems.

Nomenclature

a propagation speed, eq. (16)

A element area
fictitious damping constant, eq.
(3a)

Cij elastic constants

Cy specific heat at constant volume

D diffusion coefficient, eq, (16)

x.fy body forces per unit volume

E,F stresses or heat fluxes
"load" vector, eq. (la)

kx,ky thermal conductivities

1,m components of unit normal surface
vector

[M] mass matrix

[N(x,y)] element interpolation functions

(N(s)] interpolation functions on an
element edge

q)(.q‘y heat flux components

Q volumetric heating rate

(Ri} load vectors, eq. (14)

t time

At time step
temperature

To reference temperature for zero
stress
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u,v displacement components
a,v velocity components
U ’ typical unknown
X, Y coordinate directions
By ; thermal-mechanical coupling
J coefficients, eq. {lc)
p density
interpolation parameter
[ S 4 stress components
Xy ¥s XY
Subscripts
constant element quantity
constant surface quantity
n time step index
Superscript
n time step index

Introduction

The determination of  the structural
response induced by thermal effects is an
important factor in many aerospace structural
designs, Extreme aerodynamic heating on
advanced aerospace vehicles may produce severe
thermal stresses that can reduce operational
performance or even damage structures. The
performance of laser devices can be degraded by
thermal distortions of mirror surfaces. The
thermal environment in space may cause orbiting

structures to distort beyond operational
tolerances., To predict the structural response
accurately, effective numerical techniques

capable of both thermal and structural analyses
are required. The finite element method has
been found to be particularly suited for such
analyses due to its capability to model complex
geometry and to perform both thermal and
structural analyses.

Algorithms required for analyzing
thermally-induced structural behavior depend on
the rate at which structural temperatures vary
with time. When temperatures change rapidly the
analyses are strongly coupled, and thermal-
structural interactions occur that mandate
simul taneous solution of the thermal-structural
equations. Temperature changes can occur
rapidly due to propagation of thermoelastic
waves, during vibration induced by periodic
variations of temperature fields, due to thermal
shocks and in similar circumstances. These
types of problems may involve resolving wave-




like details of the time dependent response for
complex structures. Moreover, if the mechanical
deformation terms in the heat transfer energy
equation are retained, the equations are
inherently non-linear even in the material's
elastic range. There is a need for effective

finite . element solution algorithms that can
solve large nonlinear transient problems
efficiently wusing new vector or parallel

computing technology.

In the most common approach to determining
structural responses induced by thermal effects,
the thermal-structural analyses are assumed
uncoupled, and the structural analysis is
assumed quasistatic. The uncoupled assumption
means that mechanical deformation terms in the
heat transfer energy equation are neglected.
The quasistatic assumption means that inertia
terms in the structural equations of motion are
neglected. The practical effect of these
assumptions 1is that the heat transfer analysis
can be performed first, and the resulting
temperatures can be wused as input to a
subsequent stress analysis. This approach works
well when temperatures change slowly as occurs,
for example, in structures subjected to
aerodynamic heating. Under these circumstances,
the uncoupled, quasistatic idealization provides
an effective approach for finite element
thermal-structural analysis.

The purpose of this paper is to present a

Taylor-Galerkin finite element method for
solving large, nonlinear transient thermal-
structural problems. The method is an

application of a Taylor-Galerkin algorithm
recently developed to solve the conservation

equations of inviscid, compressible flowl™2, In

the flow problem, the algorithm is used to solve
the highly nonlinear GEuler -equations that
inciudes capturing shock discontinuities in the
flow field. Finite element models of flow
problems usually are quite large with the number
of equations typically in the range from 3,000
to 100,000 or more. Thus, the algorithm appears
to have desirable attributes that will make it

effective for large nonlinear, transient
thermal-structural problems.

The formulation of nonlinear thermal-
structural problems will be presented first,
then the Taylor-Galerkin algorithm will be
described. Next, explicit evaluation of the
finite element integrals is described. Then the
programming strategy for a vector computer

imp]ementation of the algorithm is described.
Finally, results from two thermal-structural
applications are presented.

Thermal-Structural Formulations

Coupled Thermal-Structural Analyses

The nonlinear coupled thermal-structural

equations for a two-dimensional continuum3 can
be written in the form

2} , BE} , BF) _

5T = 3 H} “(la)

where {U} is the vector "of unknowns, {E} and
{F} are vectors of stresses and heat fluxes, and
{H} is a "load" vector. For coupled thermal-
structural analyses a classical form of coupling
is assumed in the equation for illustrative

purposes, although more general thermal-
structural coupling is permitted.
u 0 0
v 0 0
_ . 2l = - (lb)
{u} = pe » (€} ={-o, ¢, {F} = "y
pv _Txy -cry
e, T qy a,
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(1c)

where u and v are the displacements, p is the
density, u and v are the velocities, ¢, is the

specific heat and T is the temperature;
Oys Ty» Tyy ATE the stress components;

X
qx, qy arey the heat fluxes; fx’ f are body

force” components per unit volume; 811 817 522

are coefficients that depend on the coefficients
of thermal expansion, and Q is the internal heat
generation rate per unit volume, The first two
equations in eg. (1) define the velocity
components, the third and fourth equations are
the equations of motion, and the fifth equation
represents conservation of energy. The term
with the square brackets in the last line of
{H} represents the classical nonlinear form of

thermal~structural coup]ing3.

The structural and thermal
written in the form of eq. (1) to resemble the
conservation equations of fluid flow. In the
fluid context, the components of {U} are called
the conservation variables, and the components
of {E} and {F} are fluxes of mass, momentum and
energy across the faces of a control volume, In
the thermal-structural context, the components
of U may also be regarded as conservation
variables. The stress components of {E} and
{F} now represent tractions on surfaces of the
control volume; however, Qy and q still

represent heat fluxes across surfaces of the
control volume.

equations are

In formulating the constitutive equations,
highly nonlinear relations between stresses,

J



strains and temperatures are permitted as well
as nonlinear relations between heat fluxes,
temperatures and temperature gradients.
Anisotropic materials can be accommodated as
well, For simplicity, simple constitutive
relations for linear, elastic orthotropic
materials will be illustrated. The stress-
strain relations for an orthotropic material are
expressed as

du A
%% in G2 0 x
. v
Uy = C21 C22 [} -39- >
1 (du ov
Txy 0 ° C33 Zz (Fy' * b—x)
Py
B11
+(T-T) < By, (2a)
P12

where Cij are elastic constants, and T, is the

reference temperature for zero stress. The heat
fluxes are expressed by Fourier's law,

__ ., ar
G = " Ky 3%
(2b)
=-x X
qy ky dy

where k,, and ky are the thermal conductivities.

Quasistatic Thermal-Structural Analysis

When  temperatures change slowly, the
inertia terms in the structural equations of
motion can be neglected. This means that the
first two equations in Eq. (1) are not
required. However, even for the quasistatic
case, the equations will be solved using a time-
marching scheme, To retain the thermal-
structural equations in a form suitable for
time-marching, the components of eq. (la) are
written as

cu =0, Ty
Uy =< ¢cvp, (E} = Tyl {F} = -o,
pch a, a

where ¢ is a fictitious damping constant that is
used to facilitate time marching to a steady-
State quasistatic soluytion. The new load vector
is

H = <9 pf (3b)

The stress and heat flux components have been
defined in eq. (2).

Boundary and Initial Conditions

Equations (1) and (3) are solved subject to
appropriate initial and boundary conditions,
The initial conditions consist of specifying the
distributions of the conservation variables
{U} at time zero. The structural boundary
condi tions consist of specifying the
displacements or surface tractions at all points
on the boundary. The thermal boundary
conditions consist of specifying temperatures or
heat fluxes at all points on the boundary.
Convective and radiation boundary conditions are
incorporated through heat fluxes,

TAYLOR-GALERKIN ALGORITHM

The solution domain D is divided into an
arbitrary number of elements of r nodes each.
Figure 1 shows the thermal and structural
models. The same finite element model is used
for the thermal and structural analyses. The
figure shows typical quadrilateral elements
{r=4} used in this paper. For simplicity, the
finite element formulation will be given for a
single scalar equation.

ou dE | AF _
?t-'l'&-'b—a—y-—H (4)

where the variables u, E, F and H are analogous
to the corresponding vector quantities in eq.

(1). Let {u)" denote the element nodal values
of the variable ulx,y,t) at time t,. The time
step At spans two typical times t, and ther 0

the transient response. The computation
proceeds through two time Jlevels, thely2 and
the1. At time level t,),5, values for u that
are constant within each element are computed
explicitly. At time Jevel th+1»> the constant
element values computed at the first time level
are used to compute nodal values for u. In the
time level t,,; computations, element contribu-
tions are assembled to yield the global
equations for nodal unknowns. The resulting
equations are approximately diagonalized to
yield an explicit algorithm,

Time Level t ./,

To advance the solution to time level
tn+l/2- a truncated Taylor series yields




ulx,y,t g /,) = uly,t) (5)

1 3y ;
+5 At 53 (x,y,tn).

Then eq. (4) is introduced on the right hand
side of eq. (5) so that

U(X’Yntn+1/2) = u(xn.YItn)

1 oF oF
= '2 At[a—x’ (K’YDtn) + 3_7 (X.Y.tnil

+atniny.t)  (6)

At time level t,,;/,, the dependent variable
u(x.y.tn+1/2) is assumed to have a constant

n+l/2
D

At time level t, in the response u, E, F
and H vary within an element and are
interpolated from nodal  values. Thus, the

following spatial approximations are used within
an element.

value u within an element.

(XYt o) = um2 (7a)
ulx,y,t) = [NGGY) D) (76)
E(x,y,t) = [N(x,y) HE)" (7¢)
FOx,y,t,) = DN,y TEFY (7d)
HX,y,t) = DNCx,y) TEH)" (7e)

where [N(x,y)] denotes element interpolation
functions and {u}" is a vector of the element
nodal quantities. The equations for y n+l
for each element are derived by the method of
weighted residua]s4. The spatial approximations
given in eq. (7) are introduced into eq. (6) to
give a residual; the result is multiplied by a
weighting function which 1in this case is
unity. Finally, the weighted residual is
integrated over the area A of the element. The
result is,

n+l/2 _ n
A uy = fA [N dA {u}

Aty Ny e -8 (2"
7 Ja 5x = Ia gy

s 55 [ DN aa ()" (8)

- n
.used previously, U

With eq (8), the dependent variable u n+l/2 for

each element can be computed explicitly using
nodal values for u, E, F and H from the previous
time t,. A later section will discuss the

evaluation of the three integrals that appear on
the right hand side of eqg. (8).

In advancing the solution to the next time
level, the values of the dependent variables on
surfaces with specified flux boundary conditions

may be required also. Let uSn+ denote the

surface value on a typical element edge [J on
the surface, Fig. 1. Following the approach

is assumed constant on
edge I[J at time tn+1 , but at time t,, u, E, F
and H vary along the edge. Thus the following
approximations are used on an element edge

n+1/2

u(x,y,tn+1/2) = ug (9a)
u(x,y,t,) = IN(s) Hu)" (9)
E(oyaty) = [N 1E)" (9¢)
Fixuy,t ) = IN(s)DEFY" (94)
Hix,yat) = INGs) IO (9e)

where [N(s)] denotes the interpolation
functions. Using the metﬁg? of weighted
residuats, the values for u n+l are derived by

integrating along the length L of an element
edge. Hence

n+l/2 n At aN _\n
Loug = f, N dstuy - = f (5] ds (8

At N n At n
s JL GG dsGY e ) INDasEH)L (10)

Thus, egs. (8) and (10} can be used to advance
explicitly the element and surface values of the
dependent variables to the1/2- Beginning with

nodal values of (u)n, (E)n. FI" and ()" , eq.

(8} is used to compute constant values
n+l/2

Up

(10) is wused to compute constant surface values
n+1/2

Us

these values at t ,y/o. These values are

for each element. In a similar way, eq.
for element boundary edges that require

computed explicitly by looping through all
elements and appropriate element edges.

Time Level tpyq

To advance the solution to t.,;, forward
and backward truncated Taylor series expansions



at t"™1/2 are used to write the approximation

U'(X.y.tn”.) = U(X._Y.tn) (11)

au
+ At 3T (x,y,tn+l/2).

Then, following the approach used previously,
eq. (4) is introduced on the right side to yield

ui(x,y,t = u(x,y,tn) (12)

n+1)
Jb
- At [—b; (X..Y.tnﬂ/z)

aF
+ s'y' (XD.Vntn+1/2)]

+

At Hix,y,t ).

n+l/2
The equation for the nodal values of {u)n+1 can
next be derived by the method of weighted
residuals using the interpolation functions Ng

as weighting functions, These terms containing
the derivatives are integrated by parts. The
resulting equation contains values of the fluxes
E and F evaluated at t;,;/5. The fluxes at the

mid-step are linearly interpolated from their
values at t, and t;;;. Thus

E(x,y,tn+1/2) = (1-9) E(x,y.tn) (13)
+6 E(x,y,tn+1)
F(x.y,tn+1/2) = (1-8) Flx,y,t)) + 8 Flx,y,t )

where the interpolation parameter 6 varies from
zero to one, These operations yield the
equations for the nodal values of a single
element,

MIHW™! = Iy (1-0) R }" + (1-0) R,}"

+ o)™ v 0™ v ™2 (1)
where

[(M] = IA {N}N] dA (15a)

n_ oN n
{Rl) = At IA {SY} [N] dA {E} (15b)

+ At fA {%;} (] dA (F)"

R,)" = - at [, WNIND ds (2 €] (15¢)
+m (r)g)
®)™ = ar [, ) N] aa @)™ (15d)
ON 1
+ at [ =) (N] dA (F}m
A dy
n+l _ _ ntl - -
R = = ot [ MN)INIds (RAEY (15¢)
+ m(F)1*L)
{Rs)"+1/2 = At f, M) dA W1/ (15f)

In eqs. {15¢c) and (15e) the coefficients % and m
are the components of a unit vector normal to
the boundary, see Fig. 1. Following wusual
finite element procedures, the element matrices
given in eq. (15) are assembled to form system
equations.

The matrix [M] defined by eq. (15a) is the
element consistent mass matrix. The teras
(R;}, i =1,2,...5 , defined by egs. (15b - 15f)
represent  "load" vectors. The Tload vectors
(Rl)n and {R,}" are computed from value +17S°""

at time step t,; the load vector (Rs}n is
computed from values computed at timelstep
n+
t"+1/2 . The load vectors (R3} and
{R4)n+1 depend on values yet to be determined

at t,y;. The consistent mass matrix and the

latter two load vectors mean that the algorithm
in the general form of eq. (14) with
arbitrary 8 is an implicit scheme. For the
computations presented in this paper, the
algorithm was cast into an explicit form by
using a lumped mass matrix and selecting

=10 to eliminate {R3}n+l and {R4)n+1 .

The explicit two time-level Taylor-Galerkin
algorithm is conditionally stable. Guidelines
for determining allowable time steps have been
established by studying 1linear one-dimensional
model equations selected to represent the
ma thematical character of the physical
problems. An analysis of the coupled thermo-
elasticity problem shows that the partial
differential equations are hyperbolic. The
stability of the algorithm was studied by

considering the linear equation.
ou ou bzu
a—t+a'gx-= 6—2- (16)
X
where a is a propagation

speed, and D is a diffusion coefficient. A
stability analysis of the algorithm applied to



this equation shows that the time step should
satisfy

&

a
At <—-m (17)

L+ 25>

where Ax is the mesh spacing. An analysis of
the quasistatic thermal-structural problem shows
that the partial differential equations are
parabolic. The stability of the algorithm was
studied by considering the linear parabolic
equation,

2
du _ . du

A stability analysis of the algorithm applied to
this equation shows that the time step should
satisfy

2
At < %)I(T (19)

For practical computations, egs. (17) and (19)
have been used as a guide to estimate the time
step, but insight into the physical problem and
some trial and error have been needed to perform
the computations successfully.

Explicit Evaluation of Element Integrals

Element integrals for the Taylor-Galerkin
algorithm shown in egs. 8, 10, and 15 were

evaluated in closed forml to avoid numerical
integrations that are customary for
quadrilaterial elements. The approach was also
used for the closed form evaluation of three
dimensional hexahedral element integralsz. The
CPU time used by the closed form evaluation of
the element integrals has been investigated and
compared with CPU times required for different
orders of Gauss numerical integration for
quadrilateral and hexahedral elements. For the
quadrilateral elements, the CPU time required to
evaluate all element integrals is reduced by a
factor of about 50. For hexahedral elements,
the time savings are even more significant,
Although these time savings are beneficial, the
CPU  time required for element integral
evaluation normally represents less than about
102 of the total CPU time required for the
sotution,

Yector Programming Strategies

The Taylor-Galerkin algorithm was
implemented with vectorization strategies
specifically for the Langley VPS 32 (a Cyber 205
with 32 million words of central memory). This
computer achieves high computational speed when
performing operations on long vectors. Vector
lengths of at least 60 are required to justify
vectorization efforts with maximum payoff
achieved for vector lengths of 1000 or more.
The predominant vector lengths in the

vectorization scheme are the number of elements
in the finite element model with occasional
operations using vector lengths equal to the
number of nodes.

The critical vectorization tasks -are for
operations that are repetitive and performed at
every time step. For finite element algorithms,
these operations are: (1) assembly of element
contributions into the global system of
equations, (2) solution of the global system of
equations, and (3) application of boundary
conditions. )

The assembly of element contributions into
the global system of equations requires special
routines for vectorization., Nodal unknowns are
stored in one dimensional arrays from 1 to the
number of nodes in the model, and in general,
node numbering may be arbitrary throughout the
mesh. Assembly of element contributions is
performed using the VPS 32 FORTRAN-supplied
scatter routine which places an element
contribution into the proper location in the
system of equations based on the element
connectivity. Every element that contains a
particular node in its connectivity provides its
own contribution to the system equations,
therefore, the assembly is an additive
operation. "Scattering” alone would merely
overwrite a previous element ‘contribution. The
special vector routine, then does an "additive
scatter.”

For an explicit scheme, solutions are
obtained directly, so that operation (2)
vectorizes naturally. Operation (3), the
application of boundary conditions, 1is an
intrinsically scalar operation and difficult to
vectorize. However, use of bit vectors to flag
boundary nodes and wuse of VPS 32 FORTRAN
supplied rountines enables full vectorization of
this operation.

A program flow chart for the Taylor-
Galerkin algorithm is shown in Fig. 2. Note
that the element integrals are computed once and
stored-for later use in the transient loop. The

Lapidus’ smoothingl'2 represents artificial
damping used to reduce spurious oscillations,.
The smoothing is typically used only in the
vicinity of discontinuities, e.g. shock fronts,
in the solution.

Application

Two applications are presented to validate
and illustrate the basic capabilities of the
approach. The first application is a one-
dimensional, transient, 1linear thermal-stress
problem for which an exact solution is
available. The second application is a
quasistatic, nonlinear, two-dimensional thermal-
stress problem of a cylinder subject to
aerodynamic heating.




Thermal Stresses in an Elastic Half-Space

The problem (see Figure 3} consists of an
elastic half-space x>0 with the plane x=0 free
of stress, and the medium constrained so that
the only displacements occur in the x
direction. The plane x=0 is suddenly at time
equal zero exposed to convective heating through
a convection coefficient h. The thermal-
mechanical coupling term in eq. (lc) s
neglected to facilitate obtaining an exact
sotution.

The problem was solved using the two-step
Taylor-Galerkin algorithm with two meshes (Fig.
3) of quadrilateral elements. Quadrilateral
elements are not required since the problem is
one-dimensional, but this application served to
validate the quadrilateral elements and the
vector code used for the second application.
The  temperature and stress distributions
computed for 100 and 500 elements are compared
with the exact solution in Figs. 4 and 5,
respectively.

The computed temperature coincides with the
exact solution for both meshes. The refined
mesh was needed to resolve the sharp peak in the
propagating stress shown in Fig. 5. The coarse
mesh predicts a smooth stress distribution but
rounds the sharp peak significantly
underestimating the peak values. The refined
mesh solution shows that the solution is
converging accurately to the exact solution as
the mesh is refined.

The problem illustrates the basic
capability of the algorithm for accurately
solving transient thermal-stress problems with
propagating disturbances. Computational times
for this relatively small problem are modest
compared to CFD problems,

Cylinder Subject to Aerodynamics Heating

The problem (Fig. 6) concerns the thermal-
structural response of a stainless steel
cylinder subject to highly-localized aerodynamic
heating due to supersonic flow. The problem
simulates the type of aerodynamic heating that
may occur on leading edges of engine structures
in hypersonic flight vehicles. The heating is
time-dependent and results from the interaction
of two shocks in the flow-field. For O<t<l s ,
the cylinder 1is heated symmetrically by a
supersonic flow that causes a symmetric bow
shock to form in front of the cylinder leading
edge. For 1<t<2 s , an oblique shock is
introduced into the flow by rotating the wedge
shown in Fig. 6, The wedge~induced shock and
the bow shock then intersect forming a localized
region of heating at about 10° below the
cylinder horizontal centerline. Wind tunnel
experiments suggest that the resulting heating
can be quite severe. The heating may be
represented approximately using the convective
coefficients shown in Fig. 7. The heating
distribution is modeled using two superimposed
cosine distributions. The maximum localized
heating for 1<t<2 s is about an order of
magnitude greater than the heating for 0<t<l s.

Over the temperature range that occurs in
the cylinder, the thermal and structural
properties of the stainless steel cylinder vary
significantly. The specific heat, thermal
conductivity and coefficient of thermal
expansion increase Tlinearly as shown in Fig.
8. In addition, the stress-strain behavior for
the material alters significantly with
temperature as shown in Fig. 9 where it can be
seen that the elastic moaulus and yield strength
decrease with increasing temperature.

The finite element model of the cylinder
with the thermal and structural boundary
conditions is shown in Fig. 10. A graded mesh
of 1500 elements and 1596 nodes is used to model
one-half of the cylinder. The model represents
convective heating on the leading edge, and
assumes negligible heat 1loss on the other
cylinder surfaces. The cylinder external
surfaces are stress-free, but the rigid body
motion of the cylinder is prohibited by the
three specified zero displacements shown., Since
the duration of the heating is much larger than
the propagation times for thermal-stress waves,
an excellent approximation 1is to neglect
structural inertia effects and perform a
quasistatic analysis. Thus egs. (3a) are solved
by the Taylor-Galerkin algorithm. The
temperature response is computed in a time-
accurate manner, but the corresponding stress
problem 1is solved independently using the
fictitious damping constant to march the
structural response to a steady-state solution
for a temperature distribution computed at a
given time.

The thermal-structural response of the
cylinder was computed for two cases: (1)
constant material properties, and (2)
temperature-dependent properties. Comparative
temperature distributions for t=ls and t=2s are
presented in Figs. 11-12, respectively. The
corresponding stress distributions superimposed
on greatly exaggerated deformed structures are
shown in Figs. 13-14.

The temperatures distripution at
t=l s (Fig., 11) is changed only slightly by the
tempera ture-dependent properties, but the
temperature distributions at t=2 s (Fig. 12)
differ considerably. For 1<t<2 s, the high
local heating raises the temperatures near tha

surface significantly. The increasing
conductivity and specific heat in the
tempera ture-dependent properties analysis

produce smaller gradients and a much Jower
surface temperature. The stress-distribution
and deformations of Figs. 13 and 14 reflect two
tempera ture-dependent property effects, The
first effect is due to the differences in the
computed temperatures, and the second is due to
the difference in the stress-strain behavior of
the material. Fig. 14, 1in particular, shows
these effects dramatically. For the constant
property case, Fig. 14a shows an excessively
large compressive stress (-325 ksi) well above
the material's allowable stress. Fig. 14db,
shows more realistic behavior with smaller
deformations and stress Jevels (-150 ksi) still
high but at acceptable levels, These lower
Tevels reflect the reduced temperatures and the




inelastic deformations permitted by the
nonlinear stress-strain curves (Fig. 9).

This problem reflects some of the
computational advantages of the explicit Taylor-
Galerkin algorithm for realistic thermal-
structural problems, The algorithm is highly
vectorizable and very large problems can be
solved on a supercomputer because global
stiffness matrices are not formerd. Non-linear
property behavior 1is included conveniently
through the vectors {E} and {(F} independent of
element stiffness matrices. Element matrices
are computed from closed-form equations and can
be computed outside of the transient loop and
stored for later use. Principal disadvantages
of the algorithm include its conditional
stability and tendency to produce oscillatory
solutions in the presence of sharp solution
discontinuities., These disadvantages have been

encountered in inviscid flow computationsl'z and
nonlinear thermal-structural applications with
propagating shock waves may show similar
results, Further computations are needed to
investigate these possibilities. Another area
worthy of further study is methods for
accelerating the convergence of the time-
marching solution to the steady-state structural
equilibrium problem associated with quasistatic
thermal-structural analysis.

Concluding Remarks

A Taylor-Galerkin finite element solution
algorithm for transient nonlinear thermal-
structural analysis of large, complex structural
problems 1is described. The two-step .Taylor-
Galerkin algorithm 1is an application of an
algorithm recently developed for problems in
compressible fluid dynamics. Two thermal-
structural formulations are described. The
first formulation 1is for thermal-structural
problems where a mechanical coupling term is
present in the heat transfer energy equation and
the inertial terms are retained in the
structural equations of motion. The second
formulation is for a quasistatic problem where
thermal-mechanical coupling and structural
inertia terms are neglected. Solutions to
transient and equilibrium problems are obtained
by time-marching. For a lumped mass approach,
the algorithm 1is conditionally - stable, The
algorithm has been implemented on the VYPS-32
vector computer with special programming
strategies to yield very high computational
speeds.

Two applications of the algorithm to
thermal-structural problems are presented. The
first application is a one-dimensional,
transient linear thermal-stress problem for an
elastic half-space. Comparisons of finite
element predictions with an exact solution
validate the approach and illustrate the
capability to capture propagating stress waves
accurately, The second application 1is a
quasistatic, nonlinear two-dimensional thermal-
stress problem of a cylinder subject to high
Tocalized aerodynamic heating. Comparisons of
constant material property and variable property

solutions  illustrated the  importance of
nonlinear effects in realistic problems and the
capability of the algorithm to incorporate the
nonlinearities effectively.

The applications have validated the
fundamental capabilities of the algorithm for
two  Dbasic thermal-structural formulations.,
Additional study is needed for more demanding
transient, nonlinear thermal-stress problems.
Further  experience is needed also for
quasistatic problems particularly with methods
to accelerate the convergence of the steady-
state structural problem. Since the algorithm
can be applied to fluid, thermal and structural
problems there is potential for developing, with
one methodology, the capability for integrating
these analyses into a single program. Such an
integrated methodology will permit the first
computational solution to problems with strong
fluid-thermal-structural interactions. The
development of an integrated fluid-thermal-
structural analysis capability is a current
research goal.
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